
Context Migration Machine

Cam Feenstra

May 2020

Define a contextual finite state machine to be the following (using the
FSM notation from wikipedia):

1. Σ - A set of input symbols

2. S - A finite non-empty set of states

3. s0 ∈ S - An initial state

4. F ⊆ S - A possibly empty set of final states

5. G - The dependency scope, a set of contextual state machines that this
one might depend on.

6. d : Σ→ G - A dependency function

7. t : {(ε, {
∏

m∈d(ε) Sm}) : ε ∈ Σ} × S → S - The transition function. Note
that this function takes as input an input and symbol and the a state, just
like a typical FSM. However, it also takes the state of machines that are
defined by its dependency function depending on the input symbol.

This definition implies that the finite state machine is a non-deterministic
finite state, as for any state an input symbol the transition function δ can be
defined as:

δ(ε, s) = {t(ε, (s1, ..., sk), s) : si ∈ Si : 1 ≤ i ≤ k} ⊆ P(S) (1)

Since all deterministic finite state machines also meeting the criteria for non-
deterministic finite state machines, this does not preclude it from also being a
deterministic finite state machine. For example, if d(ε) = ∅ ∀ε ∈ Σ the function
δ can be defined as δ(ε, s) = t(ε, ∅, s) ∀s ∈ S, ε ∈ Σ and by definition it is a
deterministic FSM.

Now define an finite state machine context to be:

1

https://en.wikipedia.org/wiki/Finite-state_machine#Mathematical_model


1. G = {m1, ...,mk} - A non-empty set of contextual finite state machines
whose dependency scopes are subsets of G. Define the following properties
of G:

(a) Sg - The product of all possible states of the machines in G, or∏
1≤i≤k Si.

(b) Σg - The product of all possible input symbols of the machines in G
or

∏
1≤i≤k Σi.

(c) D(ε) - The edges defined by {(mx,my) : mx ∈ dy(εy) : my ∈ G} for
an input ε.

2. For all ε ∈ Σg the graph defined with the elements of G as its nodes and
the elements of D(ε) as its edges is a directed acyclic graph. In other
words, for a given set of input symbols none of the machines may depend
on one another or any of one another’s dependencies.

From this definition, we can define a deterministic finite state machine for
any finite state machine context that will migrate each of the component con-
textual state machines in a deterministic manner.

Define a context migration machine as:

1. A finite state machine context G = {m1, ...,mk}

2. Σ =
∏

1≤i≤k Σi

3. S =
∏

1≤i≤k Si

4. s0 = (s01, ..., s0k)

5. F = (F1, ..., Fk)

6. T : S × {(m, ε) : ε ∈ Σm : m ∈ G} → S - The step transition function, to
be described below.

7. δ : Σ× S → S - The transition function, to be described below.

First, we will define the step transition function T . T can be defined quite
simply: for some initial state s, some input machine m, and some input symbol
ε, T (s,m, ε) returns the same value as s except that the state corresponding to
the machine m is updated to be:

tm(ε, (s1, ..., sk), sm) (2)

where (s1, ..., sk) are the states in s of the machines returned by dm(ε) and sm
is the state of m.

2



Now our transition function δ can be defined. Assume we have a tuple of
input symbols ε = (ε1, ..., εk) and an existing state s = (s1, ..., sk).

Note that the state of the context migration machine consists of two parts:
it contains a state for each of its component machines, and it contains a set of
edges between machines.

Define a graph V whose nodes are the elements of G and whose edges are
D(ε), and define a sequence of time steps (c1, ..., ck) = (1, ..., k). Since the fact
that G is a finite state machine context implies V is a DAG, we can order the
machines according to some topological ordering of V and assign each machine
m1, ...,mk to a time step c1, ..., ck. Denote cm to be the time step assigned to
each machine m and mc to be the machine assigned to each time step.

Define the state s′c to be the current state of the migration machine at some
time step c. Also define εc as the input symbol in ε corresponding to the machine
mc. The state sc is defined recursively, with the output state being defined as
s′k:

s′c = T (s′c−1, εc,mc) (3)

Now we will show by induction that there is only one possible output state
for a given input state and tuple of input symbols. We specifically will show
that for all 1 ≤ i ≤ k, the output state of mi has only one possible value, and
since the output state of the migration machine a set of all of these states that
can only then one have possible value as well.

Let i = 1. By the ordering declared above, this corresponds to some time
step c and thus some machine mc. By definition of topological ordering, since
this machine is first in the ordering it implies that dmc

(εmc
) = ∅. This means

that for this input symbol, the machine does not depend on any states other than
its own, and thus the output state can only be one possible value. Therefore,
since the definition of T implies that the only machine whose state is different
in s′1 from s′0 is mc, we can conclude that there is only one possible value of s′i.

Now assume that s′n has only one possible value for some 1 ≤ n ≤ k, and
define i = n + 1. This corresponds to some time step c and some machine mc.
The only machine whose state can differ in s′i from s′i−1 is mc. The state of mc

in s′i is defined by:

tc(εc, (s
′
i−1,m : m ∈ dc(εc)), s′i−1,c) (4)

Because this only depends on the inputs and the previous state which only has
one possible value, we can conclude that there is only one possible state of mc

in s′i. Therefore, since it is the only machine whose state can differ from s′i−1,
we can conclude there is only one possible value of s′1.

3


